#mixedattainmentmaths Conference

I am proud to have run my first conference workshop yesterday at the 3rd #mixedattainmentmaths conference in London. My session was about my school’s transition from setting to mixed attainment classes in Years 7 and 8. I discussed the nuts and bolts of how we got off the mark, what barriers we faced and how we overcame them, as well as the impact of advice and ideas from an array of advocates of mixed attainment teaching from the likes of Helen Hindle, Zeb Friedman, Mike Ollerton, Bruno Reddy and Mark Horley to name a few.

As promised, I have provided the resources from my workshop for anyone who wants more information or couldn’t make the conference. If you have any further questions I would love to hear them, and if you want to delve further into the conference then resources, information and links can be found at the brilliant http://www.mixedattainmentmaths.com that is run by conference organiser Helen Hindle. And if you would like to come and see us in action, or you want arrange to speak to our SLT for advice please get in contact.

Here are my resources:

Transition to Mixed Attainment

Key Stage 3 Learning Journey – Directed Number

Year 7 Unit 3 Assessment – Directed Number

This slideshow requires JavaScript.

NTM Examples

Notes To Myself – Directed Number

How Do You Know – Taking understanding to the next level

Last week I presented a workshop at the 5th #mixedattainmentmaths conference in London. In my session I shared a collection of tasks that can be used in Key Stages 2, 3 & 4 with with the aim of promoting fluency through practice, whilst developing a deeper understanding and promoting reasoning.

The resources I used can be found here:

How Do you Know – Taking Understanding to the Next Level

Expression Cards

Factors – Always, Sometimes, Never

Equivalent Fractions Always Sometimes Never

As part of my professional development I would really appreciate any feedback from the workshop. I would be eternally grateful if you could spend a couple of minutes completing the question below about the impact of my session:


Improving Memory Using Spaced Repetition Through Weekly Quizzes

This year I have started to make weekly quizzes for Key Stage 3 classes across the faculty to help students to retain knowledge throughout the year. At the bottom of this post I have added links to example quizzes that I have used (feel free to have a go!).

Our Key Stage 3 students all have their own Chromebooks and at the start of the year I would have been the first to admit that I wasn’t sure how to use them effectively in lessons. However, once I had learned how to use Google Forms I quickly realised that it would provide a good platform for using weekly quizzes. They are easy to create – you can use EquatIO to include Maths notation, you can choose a variety of question types and you can set it up to self-mark (saving us a job!). As if that wasn’t enough to convince you, Google Forms provides you with analysis of answers so you can see how individual students, or groups of students, performed on each question. Of course not every school has Chromebooks, iPads or other technology for students, so these quizzes could just as easily be paper-based (I do this with my Year 11 class). Alternatively they could be set for homework instead.

When I made the first quiz I came up with 10 questions and informed students to take as long as they needed on the questions as it was important that they did not feel rushed. I had hoped the quiz would last around 10 minutes but instead it took some students around half an hour to complete, so I reduced the number of questions to 5 for the week after. Since then, it has fit into lessons much better and has been much more focused. The majority of the questions I use are diagnostic multiple choice, so I can quickly pinpoint misconceptions.

In order to keep track of the topics the quizzes have covered, I created a spreadsheet that I could edit weekly. An example can be downloaded here Weekly Quiz Ticklist Year 7

As you can see from in the linked document, I write down the week number under each topic when it is used in a question, so I can keep track of how I am spacing them.

The most important part of the quiz is the next step. This is important in 3 areas:

  • For me: I use the analysis from the quizzes to create questions for the week after. For example, if a question is poorly answered I will include a similar question the week after
  • For the teacher: the analysis should be used by the teacher to inform their lessons. If their class did not perform particularly well on a question they can either address it straight away, include it in starters or if needed, re-teach the skill.
  • For the student: we subscribe to a website called Hegarty Maths which is a learning platform containing quizzes and linked videos for Maths topics. Each question has a linked Hegarty Clip Number and students pick out a question to work on each week, completing the Hegarty quiz for homework.


Below are some examples of quizzes I have made so far this year, including Google Forms quizzes for Years 7, 8 and 9, and paper-based quizzes for Year 11.

Year 7 Weekly Google Forms Quiz – https://goo.gl/forms/ebx2uYd2h8kjQFwp2

Year 8 Weekly Google Forms Quiz – https://goo.gl/forms/DWUFewfqWqdv76372

Year 9 Weekly Google Forms Quiz – https://goo.gl/forms/zSsLJJnXRnQXnZxz2

Year 11 Weekly Quiz – Year 11 Weekly Quiz 1

If you decide to try absolutely anything from this blog post I would really appreciate some feedback on how it went. Please could you fill in the document below and email it to MrE_Maths@hotmail.com

Weekly Quizzes Feedback


Thanks for reading 🙂

Practising Mathematics: Substitution

Over the summer I invested in ATM’s Practising Mathematics by Tom Francome and Dave Hewitt, which is packed with interesting activities aiming to ‘develop the mathematician as well as the mathematics’. Having used several of these tasks during the first half term of the year it has quickly become one of my favourite resources for giving students practice, building on their knowledge by spotting relationships and probing them to develop a deeper understanding through powerful questions. These tasks have been a perfect fit for my mixed attainment classes, and if you haven’t got a copy of the book, I would highly recommend that you invest.

Just last week, whilst most of the country were on their half term break, I taught a lesson on substituting into expressions to a Year 9 class using the Expressions Cards task from Practising Mathematics. I was blown away with just how powerful it was so I wanted to share my experience, but I also wanted to reflect on what I could do even better next time.

The Lesson

The task revolves around a set of cards with expressions written on them. The suggested expressions in the book are:

Substitution 1

I decided to add 4 other cards containing:

Substitution 2

Working in pairs, students were prompted to choose a value for x and substitute it into the expressions. Once they worked out the value for each card they needed to put them in order from smallest to biggest. They then repeated the process and commented on which cards changed position and which stayed the same. Most students started with positive integers less than 10 and were already commenting on what they noticed as I questioned them.

At this point I suggested that students may want to try different types of numbers: large numbers, small numbers, decimals, fractions, negatives, to see what differences there may have been. As they did this I also prompted them to conjecture examples of cards where one would always be smaller than another, no matter what value of x. This prompted even more discussion as I circulated the room. I took several examples from students and we discussed them as a class. This allowed me to probe students even further as well as address any misconceptions. In particular, I was keen to highlight the difference between 2x2 and (2x)2.

The final task I set built on from the last one as I directed students to choose two cards: card A and card B. They had to find values for x so that:

Substitution 3

This was particularly powerful as they had to think of the nature of the expressions on the cards. It also led them to find expressions where one was always bigger than the other.


I was really pleased with the connections that the task allowed the students to make. However, as the lesson went on I found some opportunities to make it even better next time.

  • I may change the cards from expressions to formulae by adding ‘y =’ to the start of each of them. Here I could instruct the students to calculate the size of y in each formula. I could even include a couple of formulae where y is not the subject, so some form or rearranging will need to be done. This resource could then link to linear graphs, simultaneous equations and many more.
  • During the ordering I did not make it clear to everyone that they should write down the order each time so they can compare, although most students were savvy enough to do it anyway.

Here are some photos I took of students’ work after the lesson:

This slideshow requires JavaScript.

How Many Ways…

Just like everyone else who has used them, I am a big fan of Don Steward’s resources, particularly because of the way they get students thinking. They allow students to explore relationships and patterns at their own pace, often increasing in difficulty as they go on.

I have used some of his ideas to create my own ‘How many ways…’ questions. Here are some of them:

How Many Ways Multiplying Mixed Numbers

How Many Ways Fractions Common Denominator


How Many - Directed Number

Would I Lie To You?

A few years ago I was obsessed with the idea of creating resources based on TV gameshows, including such things as Catchphrase, Pointless and A Question of Sport. Some of these I still use on a regular basis but one show I didn’t continue to use was Would I Lie To You? I made one resource for expanding single brackets where 3 students were selected to stand at the front and read out 3 answers – one of which was true – and the rest of the students needed to decide who was telling the truth.

Over Christmas I was doing some (last-minute!) Christmas shopping and I came across the ‘Would I Lie To You?’ board game and decided to buy it. I played it with the family on Christmas day and we all really enjoyed it. So it has got me thinking about how I can use the idea in the classroom to identify misconceptions.

The game is designed for 2 teams of up to 4 players and has 3 types of challenge:

  • Quickfire Lie – the player is given a card with the first half of an interesting fact. Underneath there is a correct answer and a blank space for the player to make up their own false answer. The aim is to decide which is the true answer.
  • Ring of Truth – the player is given a card, again with the first half of an interesting fact and a correct answer. Each of the players in the team has to come up with a false answer. The other team have to decide which is the truth.
  • This is… – the player is given a card with the first half of an interesting fact. If it is a TRUE card there is the second half of the fact and a picture which links to it. If it is a FALSE card there is no picture or second half of the fact. The player has to describe the picture and state the fact (if FALSE, they have to make up the picture and the second half of the fact). The other team then interrogate them about the picture before deciding whether it is true or false.

I am really excited to see how any of these ideas could be used effectively in the classroom and I will share any resources I make. If anyone has already made resources like this I would love to see them and find out how they went.

The Super 9

A resource I use religiously as a way of showing progressively difficult questions, the Super 9 has differentiated questions in a 3×3 grid so that, in theory, questions get more difficult as you move right and/or down. I got the idea from a colleague (@miss_jobacon on Twitter) early in my teaching career and I have made lots of my own in the last few years. I have taken a snapshot of a few examples and included the files of some others. Thanks must go to various sources such as Corbett Maths and Mathed Up for some of the questions! If you notice one of your resources and would like acknowledgement please let me know.


If you would like to download the files of any of the photo examples please leave a comment and I will sort you out 🙂

Add and Subtract Fractions GCSE

Decimals Adding and Subtracting

Area of Triangles and Parallelograms

Fractional and Negative Indices

Multiplying Decimals Harder.pptx

Recurring Decimals Observation

Simultaneous Equations 2

Super 9 – Volume and Surface Area

Super 9 – Angles

The Super 9 – Direct Proportion

The Super 9 – Perimeter and Area

The Super 9 – Polygons

The Super 9 – Ratio